BEWHAT YOU WANT TO BE cqu.edu.au

Mud Crab Indicators for the 2022 Gladstone Harbour Report Card: Project ISP015-2022

Nicole Flint, Jeremy De Valck, Amie Anastasi

Coastal Marine Ecosystems Research Centre (CMERC) CQUniversity

Report prepared for the Gladstone Healthy Harbour Partnership

This report should be cited as: Flint, N., De Valck, J., Anastasi, A. (2022). Mud crab indicators for the 2022 Gladstone Harbour Report Card. Report to the Gladstone Healthy Harbour Partnership. CQUniversity Australia, Queensland.

Acknowledgements

This study was funded by the Gladstone Healthy Harbour Partnership (GHHP) and CQUniversity Australia. We thank John Rolfe, Mac Hansler and members of the GHHP Independent Science Panel (ISP), for comments and advice. Many thanks to Rory Mulloy, Elizabeth Andrews, Matt Pfeiffer, John McGrath (CQUniversity) and Troy Salam (Gidarjil Development Corporation Ltd) for assisting with field work in 2022. We also acknowledge Emma Jackson (CQUniversity) for her previous contributions as a co-author of reports from 2017-2020.

The authors would like to take this opportunity to respectfully acknowledge the Traditional Owners of the land on which we live, work and learn, and pay our respects to the Elders, past, present and future for they hold the memories, the traditions, the culture and hopes of Indigenous Australia. In particular, we pay our respects to the peoples on whose Country this research was carried out.

Version history

Version Number	Purpose/Changes	Prepared by	Date
1.1	Initial draft of interim report - to GHHP	Flint, De Valck	15/08/2022
1.2	Final - to GHHP	Flint, De Valck, Anastasi	27/09/2022

Executive summary

Giant mud crabs (Scylla serrata) are a recreationally and commercially important species in Gladstone Harbour, an iconic seafood item, and have cultural value to Indigenous Australians. The Gladstone Harbour Report Card mud crab indicator has been monitored in seven Gladstone Harbour zones since 2017, and this report presents the results of the sixth year of sampling, in 2022. The indicator scores and grades cover three metrics: abundance (catch per unit effort), prevalence of rust lesions, and sex ratio, in each zone and across the harbour.

Two field sampling events were conducted in February and June 2022. Scores and grades were calculated using both of the 2022 data sets for the three metrics within each of the seven recommended long-term monitoring zones in Gladstone Harbour. The scores for each of the three measures were averaged across all zones first to give a harbour average for each measure, and then the average of the three harbour averages was calculated to provide a harbour-wide score and grade for the mud crab indicator.

The following scores and grades have been calculated for 2022:

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio	Zone score 2022
1. The Narrows	0.85	0.90	0.00	0.58
2. Graham Creek	0.00	1.00	0.00	0.33
4. Boat Creek	0.32	0.98	0.43	0.58
5. Inner Harbour	0.11	0.32	0.00	0.14
6. Calliope Estuary	0.00	1.00	0.29	0.43
7. Auckland Inlet	0.00	NA	NA	NA
13. Rodds Bay	0.00	NA	NA	NA
Harbour Average	0.18	0.84	0.14	0.39

NA - score not calculated, $\mathrm{n}<5$
The mud crab indicator reflects a variety of pressures on mud crabs in Gladstone Harbour, including commercial fishing, recreational fishing, and environmental/habitat condition. Over short time periods, scores and grades are also potentially influenced by biological variability. The highest zone scores in 2022 were for The Narrows and Boat Creek (both 0.58, C).

As has been the case since 2018, the zone score and grade for Auckland Inlet has not been calculated. Only one mud crab was caught here in 2022 and the small sample size ($n<5$) means it is not appropriate to calculate grades for this zone, except for the abundance measure. Rodds Bay also had a catch of less than five in $2022(n=4)$.

Abundance (CPUE) scores were lower than in previous years due to particularly low catch in February 2022, and as in previous years the Narrows and Boat Creek had the highest zone scores for this measure. As well as human impacts, there are a range of factors that can influence the catchability of mud crabs such as the moult state of crabs, reproductive cycles, lunar and diel cycles, temperature, water motion and habitat quality. In light of this potential for natural variability, the decision was taken in 2018 to allow abundance to be scored based on a moving average technique, using the average of the $75^{\text {th }}$ percentile of scores for current and previous sampling years, up to 10 years. This long-term adjustment to the benchmark allows for annual harbour-wide changes in catchability and abundance, which are more likely to reflect natural variations.

The prevalence of rust lesions scored highly (graded A) in all zones except Inner Harbour (D), which was a similar result to 2021. As previously identified for Gladstone Harbour, sex ratios of mud crabs over the legal-size limit (for males) tended towards high proportions of female mud crabs, a possible reflection of high participation in the sex-based fishery operating in Queensland.

Overall, the harbour scored lower for the mud crab indicator in 2022 (0.39) than in 2021 (0.48) and was more similar to the 2020 score (0.39), but resulted in the same grade (D) in all three years.

The mud crab indicator has been successfully monitored in Gladstone Harbour since 2017, with some revisions to the scoring and grading methods made over time as more information became available. On 8 March 2021, the GHHP Independent Science Panel (ISP) hosted an online workshop on the mud crab indicator, inviting fisheries scientists from around Australia who work on mud crabs. On the basis of six years of monitoring in Gladstone Harbour and the discussions at the workshop, the following recommendations were made in 2021 and are still relevant in 2022:

- Continue to monitor the mud crab indicator, using the established monitoring methods, twice a year at the seven long term monitoring sites. Invited experts at the GHHP mud crab indicator workshop agreed seasonal sampling should continue at a minimum
- With five years of data now available from Gladstone Harbour, additional statistical analyses could be undertaken, investigating not only patterns in the indicator measures as described above, but in other variables that are monitored (e.g., the sex ratio of smaller mud crabs and variability in catch in relation to weather variables).
- GHHP may wish to consider increasing the number of zones sampled to include other estuaries in Gladstone Harbour (e.g., South Trees Inlet and Boyne Estuary). This would expand the dataset and increase the relevance of the indicator to additional portside industries.
- It would be beneficial to sample again at Eurimbula Creek, to test whether similar declining catch trends are identified at this reference site.
- Bioaccumulation of relevant metal(loid)s in Gladstone Harbour could be considered as a possible additional measure for future monitoring.
- Research to determine the cause of rust lesions is recommended.

Contents

Acknowledgements 2
Version history 2
Executive summary 2
Introduction 5
Objectives 6
Methods 6
Field methods 6
Data analysis 9
Scoring, grading and aggregation 9
Results 11
Abundance and size 11
Sex ratio 15
Rust lesions 16
Mud crab measure results by zone 16
Indicator scores and grades 17
Discussion 17
Recommendations 19
References 21
Appendix 1 Previous scores and grades, from 2017-2021 22

Introduction

Giant mud crabs (Scylla serrata) support iconic Australian fisheries in Queensland, New South Wales, the Northern Territory and Western Australia. Mud crabs are recreationally and commercially important in Gladstone Harbour, Queensland, and hold cultural value to Indigenous Australian peoples (Brewster, 2015). In 2014, the Gladstone Healthy Harbour Partnership (GHHP) Independent Science Panel (ISP) identified mud crabs as an important indicator species to assess the health of Gladstone Harbour (McIntosh et al., 2014). In 2017, GHHP commissioned CQUniversity to develop mud crab indicators for the Gladstone Harbour Report Card (Project ISP015-2017).

An important aspect of monitoring programs is that the outputs are reported in a way that is understandable and meaningful to stakeholders, managers, and the community. Biological indicators such as mud crabs can help to fulfil this requirement in report cards (Flint et al., 2021). The Organisation for Economic Co-operation and Development (OECD), defines environmental indicators, as "[...] a parameter, or a value derived from parameters, that points to, provides information about and/or describes the state of the environment, and has a significance extending beyond that directly associated with any given parametric value. The term may encompass indicators of environmental pressures, conditions and responses." Using this definition, environmental indicators do not necessarily reflect only a single, individual environmental pressure. This is often particularly true for biological indicators, as animals are exposed to the cumulative effects of a range of pressures and conditions in their environment, which can result in a range of biological responses.

Local pressures on mud crabs in Gladstone Harbour potentially include recreational and commercial fishing, coastal development affecting mangrove and estuarine habitat quality, water quality and local weather changes associated with global climate change. Prevalence of locally relevant disease is also an important consideration. The GHHP mud crab indicator is composed of three measures, which were selected in 2017 through a rigorous scoring process against predefined selection criteria (Flint et al., 2017). A literature review was first undertaken to assemble a list of potential measures suitable for a mud crab monitoring program. These included biomarkers of contamination, bioaccumulation of toxicants, sex ratio of adult crabs, abundance (catch per unit effort of adult and sub-adult crabs), nursery value (catch per unit effort of juvenile crabs in nursery habitats), prevalence of rust lesions, prevalence of other diseases and parasites, the relationship between carapace width and body weight of adult crabs, and morphometrics (such as claw size ratio). These potential measures were reviewed, compared, and scored against a set of ten predefined selection criteria. The three measures selected for inclusion in the mud crab indicator include: abundance (catch per unit effort - CPUE), the prevalence of rust lesions, and sex ratio. The indicator was incorporated into the Gladstone Harbour Report Card and has been scored and graded each year since 2017.

The metric of abundance of mud crabs that are caught during the monitoring program provides a comparison of catch rates, using a standardised and fishery-independent methodology. To control potential monitoring variations that could arise due to capture technique and due to design constraints regarding sampling areas and sampling times, consistent methodologies are employed during each catch period. Catch rates can reflect a wide variety of natural and anthropogenic impacts on a population (Alberts-Hubatsch et al., 2016a). Factors influencing abundance of mud crabs may include localised and regional fishing pressure, habitat availability and habitat condition, the availability of food and proximity to suitable nursery grounds for the settlement of mud crab megalopae and metamorphosis to immature crabs. Climate has also been shown to impact the abundance of mud crabs (Meynecke et al., 2015) so there is also potential for this indicator to be used to monitor climate effects on mud crabs in the longer term.

The prevalence of rust lesions measure reports the proportion of captured crabs that have 'rust spot' shell lesions. The lesions were first recorded by commercial fishers in Gladstone Harbour in 1994 (Andersen and Norton, 2001). The disease is not infectious and it is thought it could be related to inhibition of calcium uptake following sublethal copper exposure, although this has not yet been experimentally confirmed (Andersen and Norton, 2001). Since rust spots are not continuously observed in Gladstone Harbour, their prevalence at any given time provides an indication of environmental state. Rust spot lesions impact the seafood 'grade' of mud crabs, so are a concern for local fishers. Recording the presence of rust spot is a relatively straightforward and non-destructive monitoring tool.

The third measure used in the mud crab indicator is sex ratio. The major drivers of changes in sex ratio are recreational and commercial fishing pressure on male mud crabs over 150 mm carapace width (measured across the ninth posteriolateral spines, referred to as 'spine width' in this report). In Queensland, female mud crabs, and male mud crabs under 150 mm , may not be retained. Changes in the ratio of males to females in sex-based fisheries can indicate a change in fishing pressure (Pillans et al., 2005; Alberts-Hubatsch et al., 2016b). The impacts of shifts in sex ratio are not well understood but may have implications for population dynamics of mud crabs and reproductive success and may also influence ecosystem processes due to the different burrowing behaviours and movements exhibited by male and female crabs.

Objectives

The overall objectives of this project were to:

1. Conduct mud crab surveys of the 7 GHHP reporting zones consistent with the survey methods used in previous years and consisting of a summer (warm, wet season) survey and a winter (cool, dry season) survey.
2. Provide mud crab scores and grades for the 2022 Gladstone Harbour Report Card. Calculate scores and grades using the methods developed in the 2017 mud crab monitoring project and revised in 2020, and using the thresholds for sex-ratio and abundance used for the calculation of the 2018, 2019, 2020 and 2021 mud crab scores.

Methods

Field methods

The following permits and approvals are in place for this research:

- General Fisheries Permit (Queensland Department of Agriculture and Fisheries; Permit Number 207715)
- Animal Ethics Approval (CQUniversity Animal Ethics Committee; Approval Number 20633)
- Authorisation for research in the Great Barrier Reef Marine Park (Approval Number G17/05027)
- Field Work Risk Assessment (CQUniversity Occupational Health and Safety Unit)

Two mud crab surveys were undertaken in 2022 (Table 1), representing a summer (warm, wet season) and winter (cool, dry season) sample. The seven monitoring sites (Figure 1) were previously chosen through a quantitative selection process (Flint et al., 2017) related to the availability of suitable habitat types and the occurrence of previous sampling sites, and have been surveyed twice annually since 2017. Eurimbula Creek was surveyed in 2018/19 as a reference site and to refine benchmarks. Details of these surveys are provided by Flint et al. (2019).

Table 1: Gladstone zones/sites sampled during February and June 2022.

Zone/site	Survey 1	Survey 2
Zone 1: Narrows	25 February 2022	22 June 2022
Zone 2: Graham Creek	25 February 2022	22 June 2022
Zone 4: Boat Creek	26 February 2022	23 June 2022
Zone 5: Inner Harbour	24 February 2022	21 June 2022
Zone 6: Calliope Estuary	26 February 2022	23 June 2022
Zone 7: Auckland Inlet	24 February 2022	21 June 2022
Zone 13: Rodds Bay	27 February 2022	24 June 2022

Sampling dates and times were determined by tidal cycles. Pots were set at least three hours before the low tide, and collected at least two hours after the low tide, resulting in soak times of at least five hours per pot. To comply with the conditions of Animal Ethics Approval, pots were placed so that they would still be submerged at low tide (preventing exposure mortality of any fish caught in the pots). Pots were placed as close as possible to mangrove habitats within this limit.

At each site and sampling event, 20 heavy duty 4-entry round collapsible crab pots were set a minimum of 100 m apart. The exception to this was Boat Creek ($n=16$), where fewer pots can be accommodated due to the smaller size of this estuary. Collapsible crab pots were purchased from a local tackle store in 2017, as they are easy to transport, assemble on the vessel and replace (Fisheries Queensland, 2009). Some damaged pots have since been replaced with identical pots. Each pot was baited with one large sea mullet (Mugil cephalus) head, and all floats were attached with 10 m ropes and marked with researcher contact details and the Fisheries Queensland research permit number. Every float had a unique identifying number to allow any missing pots to be identified quickly during retrieval. The opening of each pot was secured with a cable tie, so that if crabs were removed by others this could be detected and recorded on retrieval.

At each sampling site, the following information was recorded:

- Zone and site name;
- GPS location;
- Date;
- Set time and retrieval time for each uniquely identified pot;
- The total number of animals of each species caught in every pot; and
- Water quality parameters (temperature, dissolved oxygen, conductivity, pH, turbidity, total dissolved solids, oxidation reduction potential and salinity) measured using a YSI ProDSS Multiparameter Sampling Instrument, recorded once before setting the first pot and once after retrieving the final pot (not reported but provided to GHHP).

For every mud crab captured at each site, the following information was recorded:

- Species;
- Sex;
- Carapace width (notch width) (mm); and
- Abnormalities: type, body location, dimensions of rust spot lesions, grade of rust spot lesions (source Andersen, 2003).

All bycatch species (including blue swimmer crabs, other crabs and fish) were also recorded. Blue swimmer crabs were opportunistically weighed, measured, and checked for abnormalities before release. All animals were released alive at the site of capture. Used baits were kept on board the vessel for later disposal on land, and not discarded at the sampling site, to reduce interference with commercial and recreational mud crabbers in the area.

Figure 1: Map of the Gladstone Harbour zones showing long-term monitoring sites surveyed annual from 2017 through to 2022. The map also shows the location of Eurimbula Creek, which was sampled in 2018 and 2019 as a reference site for measures including sex ratios.

Data analysis

Data from the two field surveys (February and June 2022) were analysed separately and then together. Exploratory analyses included descriptive statistics, for example distribution plots (kernel density), and box plots for visual comparisons of differences and variance around the mean. All analyses were conducted in R version 4.2.1 (https://www.r-project.org/).

Scoring, grading and aggregation

The mud crab measures were calculated for each Zone, as follows:

- Abundance (CPUE)

$$
=\frac{\text { (total number of mud crabs caught) }}{\text { (number of pots set) }}
$$

- Prevalence of rust lesions

$$
=\frac{\text { (number of crabs with rust lesions) }}{\text { (number of crabs assessed for rust lesions) }}
$$

- Sex ratio based on oversize mud crabs

$$
=\quad \frac{\text { (number of male mud crabs }>150 \mathrm{~mm})}{(\text { number of female mud crabs }>150 \mathrm{~mm})}
$$

The formulae provided in Table 2 were used to score the mud crab measures, comparing each index value against the benchmark and worst case scenario (WCS) values. Using this method, index values worse than the WCS score a 0 , while index values better than the benchmark score a 1 and all other index values range between these bounds. The method for determining benchmark and WCS values for each measure is described by Flint et al. (2017, 2018, 2019, 2020, 2021). The Gladstone Harbour Report Card grading system is provided in Table 3.

Sex ratio of legal-sized crabs (> 150 mm carapace spine width, which is equivalent to a crab with 143 mm notch width) is calculated against a 'minimally disturbed' benchmark from the international literature. In 2017, a conservative ratio of 3:1 (sec. Alberts-Hubatsch et al., 2016) was used as the benchmark for sex ratio (Flint et al., 2017). In 2018, an unpublished thesis describing sex ratios in unfished Australian estuaries was made available (Butcher, 2004). The sex ratio in the thesis, 2 males:1 female, was equivalent to results in a separate study from an uncrabbed area in Moreton Bay (Pillans et al., 2005). As a result of this information, the benchmark for sex ratio was updated to 2:1 for 2018. In 2019, the full set of data became available for an unfished region in Central Queensland (Eurimbula Creek, which is located approximately 20 km south of Rodds Bay) and confirmed the benchmark of 2:1.

The benchmark for the abundance measure is updated annually. In 2017, the $75^{\text {th }}$ percentile of the 2017 scores was used as the benchmark. In 2018, a moving average of the $75^{\text {th }}$ percentile of this year (2018) and previous years (2017) scores was applied. Each year, a similar approach is used, taking the moving average of the $75^{\text {th }}$ percentiles for all years (now six years from 2017 to 2022). It is recommended that this approach continues, using the 10-year moving average methodology. Notably, the CPUE in 2017 (3.5) was much higher than in every subsequent year.

Table 2: Benchmarks and scoring method for each of the three recommended measures. NC = not calculable. LTMP - long term monitoring program.

Measure	Benchmark	Worst case scenario	Method of calculation
Abundance (CPUE)	2017: 3.5 ($75^{\text {th }} \%$ ile of 2017 scores) 2018: 2.5 (moving average of $75^{\text {th }}$ \%ile of 2017 and 2018 scores) 2019: 2.12 (moving average of $75^{\text {th }} \%$ ile of 2017, 2018 and 2019 scores) 2020: 1.95 (moving average of 75th $\%$ ile of 2017, 2018, 2019, 2020) 2021: 1.8 (moving average of $75^{\text {th }}$ \%ile of 2017, 2018, 2019, 2020) 2022: 1.6 (moving average of 75 ${ }^{\text {th }}$ \%ile of 2017-2022) 2023+: Moving average of $75^{\text {th }}$ \%ile of scores for current and previous years, up to 10 years	0.25	The function used to calculate scores for abundance is: 1-((x-B)/(WCS-B)) Where: $\begin{aligned} & x=\text { recorded CPUE } \\ & B=\text { benchmark }(1.6) \\ & W C S=\text { worst case scenario }(0.25) \end{aligned}$
Prevalence of rust lesions	0.04	0.35	The function used to calculate scores for prevalence is: 1-((x-B)/(WCS-B)) Where: $\mathrm{x}=$ recorded prevalence $\mathrm{B}=$ benchmark (0.04) WCS = worst case scenario (0.35)
Sex ratio	$\begin{aligned} & \text { 2017: } 3 \\ & \text { 2018+: } 2 \end{aligned}$	0.25	The function used to calculate scores for sex ratio is: 1-((x-B)/(WCS-B)) Where: $\begin{aligned} & x=\text { recorded sex ratio } \\ & B=\text { benchmark }(2) \\ & \text { WCS = worst case scenario }(0.25) \end{aligned}$

Table 3: Gladstone Harbour Report Card grading scale (Source: GHHP, 2015).

Score	Grade
$>=0.85$	A
$>=0.65,<0.85$	B
$>=0.5,<0.65$	C
$>=0.25,<0.5$	D
$0,<0.25$	E

Results

Abundance and size

Only 33 mud crabs were caught in the seven Gladstone Harbour zones in February 2022. Of these, 13 were male and 20 were female. A total of 84 mud crabs were caught across all Gladstone Harbour zones sampled in June 2022 including 30 males and 54 females. Less than five mud crabs were caught at both Auckland Inlet $(n=1)$ and Rodds Bay $(n=4)$ across February and June combined.

The average size of mud crabs caught in February 2022 was 154.6 mm carapace notch width (Table 4) and in June 2022 was 155.3 mm (Table 5). A series of two-sample t-tests was conducted to compare this year's data with data from the previous year (2022) and from the baseline (established from historical data for the 2001-09 period; Flint et al. 2017). The hypothesis being tested each time was whether this year's sample distribution (mean and variance) was equal to the distribution from the previous year and from the baseline. The full February 2022 sample including both males and females is on average significantly different from 2021 ($p<0.05$) and from the baseline ($p<0.05$), with larger crabs caught in February 2022. However, male crabs were not significantly larger than those caught in February 2021 or in the baseline years. Females were significantly larger than those caught in February 2021 (p 0.01), and in the baseline years ($p<0.05$) (Table 4). Mud crabs caught in June 2022 were not significantly larger than in June last year, but were significantly larger than those caught in the baseline years ($p<0.001$) (Table 5). When testing each sex separately there was also no significant difference in size compared to June 2021, though both males and females caught in June 2022 were significantly larger than those caught in the baseline years ($p<0.001$).

Similar to previous years, the results of the two-sample t-tests found that females caught in February 2022 were significantly larger than males ($t=-2.75, d f=26.07, p=0.01$; Figure 2). Females caught in June 2022 were also significantly larger than males ($t=-4.89, d f=50 / 86, p<0.001$; Figure $3)$.

The largest average mud crab size in February 2022 was recorded from Auckland Inlet (mean notch width of 173.0 mm) and the smallest from Calliope Estuary (140.0 mm notch width), while the largest average mud crab size in June 2022 sampling was recorded from both Calliope Estuary and Rodds Bay (mean notch width of 160.67 mm) and the smallest at Boat Creek (152.27 mm).

Table 4: Notch width (in mm) of mud crabs caught in February 2022 in comparison to February 2021; February 2021 in comparison to March 2020; and February 2022 in comparison to historical data collected between 2001-2009 by Fisheries Queensland (significance level p < 0.05)

	FULL SAMPLE			MALES			FEMALES		
	February 2022	February 2021	Historical data $(2001-$ $2009)$	February 2022	February 2021	Historical data $(2001-$ $2009)$	February 2022	February 2021	Historical data $(2001-$ $2009)$
Mean	154.55	145.94	145.45	142.92	138.49	135.12	162.10	149.06	151.67
Standard deviation	21.53	16.53	20.74	19.45	16.30	18.65	19.74	15.68	19.43
2022-21 t-test	$2022>$	2021	$2021>$						
$2020 ?$	$2022>$								
baseline									

Table 5: Notch width (in mm) of mud crabs caught in June 2022 in comparison to June 2021; June 2021 in comparison to June 2020; and June 2022 in comparison to historical data collected between 2001-2009 by Fisheries Queensland (significance level p < 0.05)

	FULL SAMPLE			MALES			FEMALES		
	June 2022	June 2021	Historical data $(2001-$ $2009)$	June 2022	June 2021	Historical data $(2001-$ $2009)$	June 2022	June 2021	Historical data $(2001-$ $2009)$
Mean	155.32	152.05	145.45	144.87	142.50	135.12	161.13	158.26	151.67
Standard deviation	15.81	14.38	20.74	15.55	12.86	18.65	12.76	11.69	19.43
2022-21 t-test	$2022>$ 2021	$2021>$ 2020	$2022>$ baseline	$2022>$ $2021 ?$	$2021>$ 2020	$2022>$ baseline	$2022>$ $2021 ?$	$2021>$ 2020	$2022>$ baseline
t value	1.8959	10.125	5.7239	0.8338	3.81	3.4338	1.655	4.7949	5.4488
p value	0.0615	$2.2 \mathrm{e}-$ 16	$1.6 \mathrm{e}-07$	0.4112	0.0003	0.0018	0.1038	$4.874 \mathrm{e}-$ 06	$1.34 \mathrm{e}-06$
Signif?	NO	YES	YES	NO	YES	YES	NO	YES	YES

Figure 2: Notch width (mm) distribution of male and female mud crabs caught in February 2022. The box represents the middle 50% of ordered observations. Centre line is the median, the lower and upper edges correspond to the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles. Whiskers extend from the box to the smallest and largest values no greater than 1.5 times the inter-quartile range. Data beyond the end of the whiskers are flagged as outliers and plotted individually as circles.

Figure 3: Notch width (mm) distribution of male and female mud crabs caught in June 2022.

In February 2022, for the sixth consecutive year, total CPUE was again highest at the Narrows (though lower than in previous years, at 0.5) and lowest at Auckland Inlet (0.05) and Rodds Bay (0.05) (Table 6, Figure 4). In June 2022, CPUE was also highest at the Narrows (2.3) and, as in previous sampling years, again lowest at Auckland Inlet, where no mud crabs were caught (0) (Table 7, Figure 5).

Table 6: Catch per unit effort in February 2022, by zone.

ZONE	ZONE NAME	\# POTS	\# MUD CRABS CAUGHT	CPUE
$\mathbf{1}$	Narrows	20	10	0.50
$\mathbf{2}$	Graham Creek	20	4	0.20
$\mathbf{4}$	Boat Creek	16	7	0.44
$\mathbf{5}$	Inner Harbour	20	6	0.30
$\mathbf{6}$	Calliope Estuary	20	4	0.20
$\mathbf{7}$	Auckland Inlet	20	1	0.05
$\mathbf{1 3}$	Rodds Bay	20	1	0.05

Figure 4: Number of mud crabs in each pot set in February 2022, by zone.

Table 7: Catch per unit effort in June 2022, by zone.

ZONE	ZONE NAME	\# POTS	\# MUD CRABS CAUGHT	CPUE
$\mathbf{1}$	Narrows	20	46	2.3000
$\mathbf{2}$	Graham Creek	20	4	0.2000
$\mathbf{4}$	Boat Creek	16	15	0.9375
$\mathbf{5}$	Inner Harbour	20	10	0.5000
$\mathbf{6}$	Calliope Estuary	20	6	0.3000
$\mathbf{7}$	Auckland Inlet	20	0	0.0000
$\mathbf{1 3}$	Rodds Bay	20	3	0.1500

Figure 5: Number of mud crabs in each pot set in June 2022, by zone. No mud crabs were caught at Auckland Inlet in this sampling event.

Sex ratio

In February and June 2022, more oversized female crabs were caught than oversized male crabs in Gladstone Harbour. Sex ratios were therefore low across the harbour in both February and June (Table 8). A total of 89 mud crabs over the legal size limit of 150 mm carapace width (equivalent to 143 mm notch width) were caught in 2022 , of which 21 were male.

Table 8: Sex ratios of mud crabs with notch width > 143 mm , in February and June 2022, by zone.

ZONE	ZONE NAME	FEBRUARY 2022 DATA			JUNE 2022 DATA		
		Males	Females	Sex ratio	Males	Females	Sex ratio
$\mathbf{1}$	Narrows	0	7	$\mathbf{0 . 0 0 0 0}$	4	34	$\mathbf{0 . 1 1 7 6}$
$\mathbf{2}$	Grahams Creek	$/$	4	$/$	1	3	$\mathbf{0 . 3 3 3 3}$
$\mathbf{4}$	Boat Creek	2	4	$\mathbf{0 . 5 0 0 0}$	6	4	$\mathbf{1 . 5 0 0 0}$
$\mathbf{5}$	Inner Harbour	0	2	$/$	1	6	$\mathbf{0 . 1 6 6 7}$
$\mathbf{6}$	Calliope Estuary	1	1	$\mathbf{1 . 0 0 0 0}$	2	3	$\mathbf{0 . 6 6 6 7}$
$\mathbf{7}$	Auckland Inlet	1	$/$	$/$	$/$	$/$	/
$\mathbf{1 3}$	Rodds Bay	1	$/$	$/$	2	0	Inf

Rust lesions

Of the 33 mud crabs captured in February 2022, three had rust lesions. The three crabs with lesions were caught at Inner Harbour (Table 9). There were also few crabs with rust lesions encountered in June 2022 (6 out of 84 mud crabs caught). In June, rust lesions were encountered at The Narrows, Boat Creek and Inner Harbour (Table 9).

Table 9: Number and percentage of mud crabs with rust spot lesions caught in February and June 2022, by zone. / = no data as no mud crabs were caught.

| ZONE | ZONE NAME | FEBRUARY 2022 DATA | | JUNE 2022 DATA | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | \# with
 lesions | \% with lesions | \# with
 lesions | \% with lesions |
| $\mathbf{1}$ | Narrows | 0 | 0% | 4 | 8.7% |
| $\mathbf{2}$ | Graham
 Creek | 0 | 0% | 0 | 0% |
| $\mathbf{4}$ | Boat Creek | 0 | 0% | 1 | 6.7% |
| $\mathbf{5}$ | Inner
 Harbour | 3 | 50% | 1 | 10% |
| $\mathbf{6}$ | Calliope
 Estuary | 0 | 0% | 0 | 0% |
| $\mathbf{7}$ | Auckland
 Inlet | 0 | 0% | $/$ | $/$ |
| $\mathbf{1 3}$ | Rodds Bay | 0 | 0% | 0 | 0% |

Mud crab measure results by zone

The mud crab data set used to score each selected zone for the 2022 Gladstone Harbour Report Card included combined data from two monitoring events conducted in February and June 2022. Results for each measure are provided by zone in Table 10.

Table 10: Calculated index values for 2022, for each of the three measures in each of the seven long-term monitoring sites. NC = not calculable (Auckland Inlet and Rodds Bay, n < 5 crabs caught in 2022).

Zone	Zone name	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio
$\mathbf{1}$		1.4	0.07	0.10
$\mathbf{2}$	Narrows	Graham Creek	0.20	0
$\mathbf{4}$	Boat Creek	0.69	0.05	0.14
$\mathbf{5}$	Inner Harbour	0.40	0.25	0.13
$\mathbf{6}$	Calliope Estuary	0.25	0	0.75
$\mathbf{7}$	Auckland Inlet	0.025	0	NC
$\mathbf{1 3}$	Rodds Bay	0.10	0	NC

Indicator scores and grades

Scores and grades for the mud crab measures for the 2022 Report Card are provided in Table 11. Scores > 1 and < 0 were bounded by 0 and 1 in line with GHHP standard methods (GHHP, 2015). An overall score for the Mud Crab Indicator of 0.39 (D) has been calculated as the average of the three "Harbour Average" measure scores, and an overall grade is provided for each zone. Only one mud crab was caught in Zone 7 - Auckland Inlet and only four in Zone 13 - Rodds Bay. Given the small sample sizes ($\mathrm{n}<5$ mud crabs from 40 pots), there was insufficient data to calculate scores and grades for the prevalence of rust lesions or sex ratio measures in these two zones in 2022.

Table 11: Scores and grades for mud crab measures and the 2022 mud crab indicator by Zone. NC = Not calculable, n < 5 .

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio	Zone score 2022
1. The Narrows	0.85	0.90	0.00	0.58
2. Graham Creek	0.00	1.00	0.00	0.33
4. Boat Creek	0.32	0.98	0.43	0.58
5. Inner Harbour	0.11	0.32	0.00	0.14
6. Calliope Estuary	0.00	1.00	0.29	0.43
7. Auckland Inlet	0.00	NA	NA	NA
13. Rodds Bay	0.00	NA	NA	NA
Harbour Average	0.18	0.84	0.14	0.39

Discussion

The Harbour Average was graded D in 2022. While the Harbour Average score is lower than in 2021, the grade remains the same. The overall grades for the Mud Crab Indicator for each zone are as follows:

A: No zones.
B: No zones.
C: Zone 1 - Narrows, Zone 4 - Boat Creek.
D: Zone 2 - Graham Creek, Zone 6 - Calliope Estuary.
E: Zone 5 - Inner Harbour.
Not Calculable (n < 5 mud crabs caught): Zone 7 - Auckland Inlet, Zone 13 - Rodds Bay.
For comparison, the full set of scores and grades from previous years (2017, 2018, 2019, 2020 and 2021) are provided in Appendix 1. Data collection and scoring methods used in 2022 were identical to those used in 2020 and 2021. In 2020, the GHHP ISP recommended changing the way the Harbour Average score and grade is determined, by averaging the scores for each measure across all zones first, then calculating the Harbour score as the average of those three average measure scores. Previously, the overall indicator score for each zone was calculated first and the Harbour score was taken as the average of the zone scores. The change in averaging order was made to allow for the inclusion of CPUE results from low catch zones (particularly Auckland Inlet) in the overall Harbour score/grade. Hence, the harbour average scores and grades from 2020, 2021 and 2022 are directly comparable, while those from 2019 and earlier were calculated using a different averaging order.

Scores have declined slightly in 2022, due largely to the lower catch (CPUE) in 2022, particularly in February. Zone 1 - the Narrows and Zone 4 - Boat Creek were both graded C in 2022. The grade for Zone 2 - Graham Creek is the same as in recent years (D). In 2022, Zone 5 - Inner Harbour was graded E, a decline from recent years (D). The grade for Zone 6 - Calliope Estuary is a D in 2022, as it was in 2021.

As has been the case since 2018, an overall score for Zone 7 - Auckland Inlet was again incalculable in 2022 due to very low catches ($n=1$). This year, the catch at Zone 13 - Rodds Bay was just under the five-crab minimum to calculate measure scores $(n=4)$. In situations where less than five mud crabs are caught in a zone, abundance can be scored but the sample size is insufficient to give a reliable indication of the prevalence of rust lesions or sex ratio.

In 2022, lower mud crab catches were experienced than in previous years. The catch of mud crabs in baited pots can vary in response to a range of natural and anthropogenic factors, including weather variations such as rainfall and temperature, and lag effects of weather in previous years. The use of a 10-year moving average benchmark was adopted to eventually help to allow for natural variations in catch, but still allow any long-term declining trends (e.g., linked to extraction rates or recruitment limitation) to be identified. Mud crab populations rely on the presence of suitable habitat and on sufficient recruitment from adult populations. As recruitment of juvenile mud crabs in Gladstone Harbour is not monitored, the relationship between recruitment and adult abundance is not well understood. It is also possible that the times of year that adult crabs are active is gradually changing in response to climatological factors.

CQUniversity is currently collaborating with the Queensland Department of Agriculture and Fisheries on a research project funded by the Fisheries Research and Development Corporation (FRDC), to improve knowledge and assessment of Queensland mud crabs. One aspect of this project includes investigating intra-annual patterns in mud crab catches at several sites in Gladstone Harbour. The results of the FRDC project may assist in interpreting some of the longer-term patterns that have been observed through the Gladstone Harbour Report Card since 2017.

The potential for weather and climate factors to influence mud crab catches in Gladstone Harbour was also the topic of a CQUniversity internship that was recently undertaken by a current PhD student. The project investigated catches in the harbour in relation to a range of potentially influential variables, using data from GHHP monitoring. The results are currently being processed if they reveal information relevant to the Report Card results these will be communicated to GHHP.

The prevalence of rust lesions measure was graded A in most zones in 2022, except Inner Harbour which was graded D (though partly due to sample numbers, as only four crabs had rust lesions), a similar result to 2021. This measure is based on a moderately-high confidence benchmark and WCS developed using research data published by Andersen and Norton (2001) and Dennis et al. (2016), and data collected in June 2017 (Flint et al., 2017). The cause of rust shell lesions is likely to be related to inhibition of calcium update following exposure to some metals in the environment, possibly copper and zinc, although this has not been experimentally confirmed (Andersen et al., 2000; Andersen and Norton, 2001). However, the exact reasons for changes in prevalence of rust shell lesions in Gladstone (and elsewhere) has never been definitively explained. This represents a knowledge gap that should ideally be addressed.

As also noted by invited experts during a GHHP workshop to discuss the mud crab indicator (8 March 2021), it is important to continue to monitor rust shell lesions in Gladstone, given the high prevalence that has been reported from the region at various times. Monitoring during non-event periods provides valuable baseline data and provides assurance to the report card's audience (managers and the community) that rust shell lesions are usually at low prevalence in the harbour. In the future, as more data are collected, the measure could potentially be revised to incorporate lesion severity based on lesion size and whether the shell has been perforated (sensu Andersen and Norton, 2001).

In areas such as Queensland, where mud crabs are managed as a sex-based fishery, differences between the sex ratio (the ratio of legal-sized males to females of the same size) that cannot be explained by biological factors, are likely to be related to fishing pressure. The sex ratio measure was again graded D and E in all zones in 2022, similar to previous years. As has been noted in the reports from previous years, the pattern also suggests that fishers are observing regulations regarding the release of female mud crabs. Shifts in sex ratio caused by high fishing pressure have implications for population dynamics and may also influence ecosystem processes through sex-biased behaviours such as burrow digging. Research is underway by a PhD student at CQUniversity to investigate the reproductive biology of female mud crabs. A second CQUniversity PhD student has also recently commenced, investigating habitat use and movements of male and female mud crabs, including in Central Queensland.

New management arrangements have recently been introduced in the Queensland Mud Crab Fishery, and commercial fisheries data is now more detailed, providing a potential source of additional data in future years. The issue with this data source is that it relates to retained catch (i.e., large males) so it does not provide information on the whole mud crab population. Nevertheless, as the GHHP ISP pointed out in the workshop, commercial fishers set far more pots each year than is achievable for an independent monitoring program, and these data could provide a valuable addition or cross reference to the mud crab indicator. CQUniversity is examining the potential use of commercial catch data for future reporting years.

An important criterion when selecting measures to include in the GHHP mud crab indicator when it was developed in 2017, was the monitoring cost and complexity. Technically-complex indicators, indicators that are very costly to monitor, or those requiring substantial additional research to allow them to be incorporated into the report card, were not considered practical. The GHHP mud crab indicator developed in 2017 is relatively simple to monitor in comparison to some other potential biological indicators that require laboratory analysis, and importantly, it also has minimal impacts on the target species, local ecosystem or stakeholders, as sampling is non-lethal and uses a low-impact fishing method. As described in the CQUniversity reports to GHHP since 2017 (Flint et al., 2017, 2018, 2019, 2020, 2021), there are some ongoing considerations relating to the continuous improvement of the GHHP mud crab indicator as new information becomes available.

In addition to the three current measures (abundance/catch, sex ratio and rust lesions), two other potential measures were identified in 2017 (Flint et al., 2017). These were bioaccumulation of metal(loid)s and recruitment to nursery grounds of juvenile crabs. The relative benefits of both have been discussed in previous reports, but both would involve additional monitoring costs.

Recommendations

The mud crab indicator has been successfully monitored in Gladstone Harbour since 2017, with some revisions to the scoring and grading methods made over time as more information became available. On 8 March 2021, the GHHP ISP organised a workshop on the mud crab indicator, inviting fisheries scientists from around Australia who work on mud crabs. On the basis of six years of monitoring in Gladstone Harbour and the discussions at the workshop, the following recommendations were made in 2021 and are still relevant:

- Continue to monitor the mud crab indicator, using the established monitoring methods, twice a year at the seven long term monitoring sites. Invited experts at the GHHP mud crab indicator workshop agreed seasonal sampling should continue at a minimum, and more frequently if possible.
- With five years of data now available from Gladstone Harbour, additional statistical analyses could be undertaken, investigating not only patterns in the indicator measures as described above, but in other variables that are monitored (e.g., the sex ratio of smaller
mud crabs and variability in catch in relation to weather variables).
- GHHP may wish to consider increasing the number of zones sampled to include other estuaries in Gladstone Harbour (e.g., South Trees Inlet and Boyne Estuary). This would expand the dataset and increase the relevance of the indicator to additional portside industries.
- It would be beneficial to sample again at Eurimbula Creek, to test whether similar declining catch trends are identified at this reference site.
- Bioaccumulation of relevant metal(loid)s in Gladstone Harbour could be considered as a possible additional measure for future monitoring.
- Research to determine the cause of rust lesions is recommended.

References

Alberts-Hubatsch, H., Lee, S.Y., Meynecke, J.-O., Diele, K., Nordhaus, I., Wolff, M., 2016a. Life-history, movement, and habitat use of Scylla serrata (Decapoda, Portunidae): current knowledge and future challenges. Hydrobiologia 763, 5-21.
Alberts-Hubatsch, H., Lee, S.Y., Meynecke, J.O., Diele, K., Nordhaus, I., Wolff, M., 2016b. Life-history, movement, and habitat use of Scylla serrata (Decapoda, Portunidae): current knowledge and future challenges. Hydrobiologia 763, 5-21.
Andersen, L., Norton, J., 2001. Port Curtis mud crab shell disease: nature, distribution and management. FRDC Project No. 98/210. Central Queensland University, Gladstone.
Brewster, A., 2015. Giving this Country a Memory: Contemporary Aboriginal Voices of Australia. Cambria Press, New York.
Flint, N., Anastasi, A., De Valck, J., Chua, E., Rose, A., Jackson, E.L., 2017. Developing mud crab indicators for the Gladstone Harbour Report Card: Project ISP015-2017. CQUniversity Australia, Rockhampton, Australia.
Flint, N., Anastasi, A., De Valck, J., and Jackson, E.L, 2018. Mud crab indicators for the Gladstone Harbour Report Card. Report to the Gladstone Healthy Harbour Partnership. CQUniversity Australia, Queensland.
Flint, N., De Valck, J., Anastasi, A., and Jackson, E.L., 2019. Mud crab indicators for the Gladstone Harbour Report Card. Report to the Gladstone Healthy Harbour Partnership. CQUniversity Australia, Queensland.
Flint, N., De Valck, J., Anastasi, A., and Jackson, E.L., 2020. Mud crab indicator for the 2020 Gladstone Harbour Report Card. Report to the Gladstone Healthy Harbour Partnership. CQUniversity Australia, Queensland.
Flint, N., De Valck, J., Anastasi, A., 2021. Mud crab indicator for the 2021 Gladstone Harbour Report Card. Report to the Gladstone Healthy Harbour Partnership. CQUniversity Australia, Queensland.
Flint, N., Anastasi, A., De Valck, J., Chua, E.M., Rose, A.K., Jackson, E.L., 2021. Using mud crabs (Scylla serrata) as environmental indicators in a harbour health report card. Australasian Journal of Environmental Management 28, 188-212.
Fisheries Queensland, 2009. Fisheries Long Term Monitoring Program Sampling Protocol - Mud Crab (2008 onwards) Section 1. Brisbane, Australia.
GHHP, 2015. Technical Report, Gladstone Harbour Report Card 2015, GHHP Technical Report No.2. Gladstone, Australia.
McIntosh, E.J., Poiner, I.R., Panel, I.S., 2014. Gladstone Harbour Report Card Framework recommendation. Gladstone Healthy Harbour Partnership, Gladstone, Queensland, p. 82.
Meynecke, J.O., Mayze, J., Alberts-Hubatsch, H., 2015. Performance and physiological responses of combined t-bar and PIT tagged giant mud crabs (Scylla serrata). Fisheries Research 170, 212-216. Pillans, S., Pillans, R.D., Johnstone, R.W., Kraft, P.G., Haywood, M.D.E., Possingham, H.P., 2005. Effects of marine reserve protection on the mud crab Scylla serrata in a sex-biased fishery in subtropical Australia. Marine Ecology Progress Series 295, 201-213.

Appendix 1 Previous scores and grades, from 2017-2021

Scores and grades for mud crab measures and the mud crab indicator by GHHP Zone for 2017.

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio*	Zone score (grade) $\mathbf{2 0 1 7}$
1. The Narrows	$1.00(\mathrm{~A})$	$1.00(\mathrm{~A})$	$0.00(\mathrm{E})$	$0.67(\mathrm{~B})$
2. Graham Creek	$0.52(\mathrm{C})$	$0.95(\mathrm{~A})$	$0.36(\mathrm{D})$	$0.61(\mathrm{C})$
4. Boat Creek	$1.00(\mathrm{~A})$	$1.00(\mathrm{~A})$	$0.11(\mathrm{E})$	$0.70(\mathrm{~B})$
5. Inner Harbour	$1.00(\mathrm{~A})$	0.89 (A)	$0.71(\mathrm{~B})$	$0.87(\mathrm{~A})$
6. Calliope Estuary	$0.14(\mathrm{E})$	$0.90(\mathrm{~A})$	$0.36(\mathrm{D})$	$0.47(\mathrm{D})$
7. Auckland Inlet	$0.12(\mathrm{E})$	$0.63(\mathrm{C})$	$0.00(\mathrm{E})$	$0.25(\mathrm{D})$
13. Rodds Bay	$0.03(\mathrm{E})$	$0.67(\mathrm{~B})$	$0.39(\mathrm{D})$	$0.36(\mathrm{D})$
Harbour Average				

Scores and grades for mud crab measures and the mud crab indicator by Zone for 2018.

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio*	Zone score (grade) 2018
1. The Narrows	1 (A)	1 (A)	0 (E)	0.67 (B)
2. Graham Creek	0.3 (D)	1 (A)	0.03 (E)	0.44 (D)
4. Boat Creek	0.25 (D)	1 (A)	0.29 (D)	0.51 (C)
5. Inner Harbour	0.52 (C)	1 (A)	0.02 (E)	0.52 (C)
6. Calliope Estuary	0.47 (D)	1 (A)	0.11 (E)	0.52 (C)
7. Auckland Inlet	0 (E)	NC	NC	NC
13. Rodds Bay	0.2 (E)	0.90 (A)	0.06 (E)	0.39 (D)
Harbour Average				0.51 (C)

Scores and grades for mud crab measures and the mud crab indicator by GHHP Zone for 2019.

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio*	Zone score (grade) 2019
1. The Narrows	1 (A)	0.90 (A)	0 (E)	0.63 (C)
2. Graham Creek	0.12 (E)	1 (A)	0.24 (E)	0.45 (D)
4. Boat Creek	0.46 (D)	0.94 (A)	0.05 (E)	0.49 (D)
5. Inner Harbour	0.67 (B)	0.70 (B)	0.08 (E)	0.48 (D)
6. Calliope Estuary	0.29 (D)	1 (A)	0 (E)	0.43 (D)
7. Auckland Inlet	0 (E)	NC	NC	NC
13. Rodds Bay	0.27 (D)	0.70 (B)	0.12 (E)	0.36 (D)
Harbour Average				0.47 (D)

Scores and grades for mud crab measures and the mud crab indicator by Zone for 2020.

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio	Zone score 2020
1. The Narrows	1 (A)	0.80 (B)	0 (E)	0.60 (C)
2. Graham Creek	0.18 (E)	0.84 (B)	O(E)	0.34 (D)
4. Boat Creek	1 (A)	0.84 (B)	0.29 (D)	0.71 (B)
5. Inner Harbour	0.19 (E)	0.99 (A)	O(E)	0.39 (D)
6. Calliope Estuary	0.13(E)	0.45 (D)	O(E)	0.19 (E)
7. Auckland Inlet	O(E)	NC	NC	NC
13. Rodds Bay	0.13(E)	0.45 (D)	0.06(E)	0.22 (D)
Harbour Average	0.38 (D)	0.73 (B)	0.06(E)	0.39 (D)

Scores and grades for mud crab measures and the mud crab indicator by Zone for 2021.

Zone	Abundance (CPUE)	Prevalence of rust lesions	Sex ratio	Zone score 2021
1. The Narrows	1	0.92	0	0.64
2. Graham Creek	0.27	0.89	0	0.39
4. Boat Creek	0.83	0.94	0.03	0.60
5. Inner Harbour	0.63	0.47	0.07	0.39
6. Calliope Estuary	0.26	1.0	0.14	0.47
7. Auckland Inlet	0	NC	NC	NC
13. Rodds Bay	0.16	0.96	0.57	0.56
Harbour Average	0.45	0.86	0.14	0.48

